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SUMMARY 

Some relationships have been derived describing the pressure profile along 
a capillary column in supercritical fluid chromatography (SFC) in terms of experi- 
mental parameters. The calculated results for carbon dioxide as mobile phase suggest 
that, under usual operating conditions in capillary SFC, the pressure profile is nearly 
linear. The importance of the secondary effects detracting from applicability of the 
Hagen-Poiseuille equation is also discussed and shown to be negligible in most 
practical situations. 

INTRODUCTION 

In certain applications of capillary-column supercritical fluid chromatography 
(SFC) an accurate knowledge of the pressure drop across the column is necessary. For 
instance, when the diffusion coefficients of various solutes in dense fluids are measured 
with the chromatographic band-broadening techniquele5 the pressure drop is required 
to assess the portion of band broadening that results from expansion of the mobile 
phase along the column. In analytical SFC, the pressure drop is needed when the 
effects are investigated of the experimental parameters on the column effllciency and 
resolving power6. Moreover, a theoretical interpretation of SFC retention data is 
greatly simplified if the pressure drop across the column can safely be neglected7p8. 

Theoretical studies of the column pressure drop in SFC have focussed on packed 
columnsg3’*. However, as pointed out by Schoenmakers et aLg,the pressure drops 
across typical packed and capillary SFC columns may be comparable under the usual 
experimental conditions. In packed-column SFC the pressure drop may actually 
become an operating parameter since both the column inlet and outlet pressures can be 
measured and controlled. In capillary-column SFC, however, flame-based detectors 
are frequently used. With these detectors the column effluent must be decompressed 
prior to detection. A pressure sensor between the column and the detector would 
inevitably degrade the system’s efficiency by causing a large extra-column contribution 
to band broadening. For these reasons, a brief theoretical analysis of the pressure 
profile along a capillary column appears worthwhile. 

In the following sections, relationships are derived for the pressure profile along 
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the SFC capillary column in terms of experimental parameters. A few examples are 
shown of the calculated pressure drops in capillary-column SFC with carbon dioxide 
as the mobile phase. Finally, the significance of various effects detracting from the 
applicability of the Hagen-Poiseuille equation is also discussed. 

THEORETICAL 

Starting from the Hagen-Poiseuille equation, the mass flow-rate of the mobile 
phase through the column cross-section positioned at a distance z from the column 
inlet may be written as: 

& = - [nr4p/(8q)](dP/dz) (1) 

The meaning of the symbols is explained at the end of this article. The density and the 
dynamic viscosity of the mobile phase are those at the local pressure. The flow is 
assumed to be isothermal. The minus sign in eqn. I takes account of the fact that the 
pressure decreases in the direction of flow. Unlike the volumetric flow-rate or the mean 
linear flow velocity, the mass flow-rate in eqn. 1 is invariant with respect to 
temperature and pressure. This fact may be useful when there is no suitable substance 
to mark the dead retention timelI. 

It follows from eqn. 1 that the local pressure, P, at a distance z from the column 
inlet satisfies the relationship: 

s v-l dP = 8r;zz/(nr4) 
P 

(2) 

To evaluate the integral in eqn. 2, the pressure dependence of 1j-l must be known. It 
should be noted that in SFC both 9 and p vary with pressure, whereas in gas 
chromatography the pressure dependence of r may be neglectedL2. Generally, v-l may 
be expanded into a Taylor series with respect to pressure. As the pressure drop in 
capillary SFC is usually small compared to Pi, the series may be truncated after the 
second term: 

V-l = Vi' + (P - Pi)K (3) 

Combination of eqns. 2 and 3 yields: 

V,‘(Pi - P) ~ K (Pi - P)2/2 = 8hz/(w4) (4) 

Eqn. 4 clearly shows the effect of K upon the overall appearance of the pressure profile 
along the column. If Ic > 0, the dependence of P on z is convex in the upward direction, 
i.e., the pressure at half the column length is greater than the arithmetic mean of the 
inlet and outlet pressures. This is the case in gas chromatography. If K < 0, the 
dependence is concave, and when K = 0 a linear pressure profile results. Eqn. 4 may be 
solved to give: 
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Finally, the mean column pressure may be obtained by averaging eqn. 5 over the 
column length, L: 

-1 + (6) 

The column-outlet pressure, PO, may be calculated by substituting L for z in eqn. 5. 
Although eqns. 5 and 6 fail for strictly linear pressure profiles (X = 0), an application 
of the l’H8pital rule shows that they converge to their correct counterparts in the limit 

of IC + 0 [P = Pi - ~GzLv~/(w~) and P = Pi - 41;2Lvi/(71r4), respectively]. 

It follows from the above consideration that the pressure dependence of v-l 
plays a key role in determining the pressure profile along the column, Unfortunately, 
no explicit equation can be given to express v-i as a function of pressure throughout 
the temperature and pressure range pertinent to SFC. This is because, over such 
a broad range of fluid states, neither density nor dynamic viscosity can be related to 
temperature and pressure by a single explicit expression with an accuracy sufficient for 
the present purpose. For this reason, the assessment of the pressure dependence of v-i 
should be based upon the experimental data for a given fluid, at least when y is 
concerned. 

As an example, Fig. 1 shows v-l as a function of pressure for carbon dioxide at 
three different temperatures. The dynamic viscosity values used were those recom- 
mended by Stephan and Lucas”. Their tabulated data were smoothed graphically 
with the Reichenberg correlation14 serving as an approximate guide. The densities 
were calculated from the corresponding-states correlation of Lee and Kesler”. The 
isotherms shown in Fig. 1 were drawn through the data points calculated at a pressure 
step of 5 bar. At any particular pressure, the respective value of K to be used in eqns. 
5 and 6 was approximated by the slope of the straight line drawn to the nearest 
neighbouring point on the lower-pressure side. The 3 15-K isotherm in Fig. 1 displays 
an enhancement of v-l at pressures somewhat above the critical. The enhancement 
probably becomes more apparent as the critical temperature is approached; however, 
a verification of this conjecture seems to be precluded by the uncertainties regarding 
the dynamic viscosity of carbon doxide in the critical region13. The uncertainty of the 
data plotted in Fig. 1 may be estimated to be +8%; this figure comes from the 
combined uncertainties of y and p, k 5 and k 3%, respectively. 

For certain ranges of temperature and pressure, higher-order terms of the Taylor 
series should be included in eqn. 3 to account for the curvature of the isotherm showing 
v-i as a function of pressure (I$, the 3 15-K isotherm in Fig. 1 at pressures close to 100 
bar). In such an instance, higher powers of the difference (Pi - P) would appear in eqn. 
4, and eqn. 4 would have to be solved numerically to yield the pressure prolile along the 
column. For such a procedure, however, the respective higher-order derivatives of v-l 
with respect to pressure would be required. At present, the derivatives cannot be 
evaluated because of limited precision of the viscosity data. 

It is apparent from Fig. 1 that K may acquire both positive and negative values 
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Fig. I. Reciprocal kinematic viscosity of carbon dioxide as a function of pressure and temperature. 

within the temperature and pressure ranges pertinent to SFC. Hence, in principle, both 
positive and negative departures from a linear pressure profile may occur in 
capillary-column SFC with carbon dioxide as the mobile phase, although the 
deviations are very small (see below). This situation differs markedly from that in 
low-pressure gas chromatography where only positive deviations from linear pressure 
profiles are possible. 

RESULTS AND DISCUSSION 

In Table I a few examples are listed of the calculated pressure drops for three 
capillary columns within the temperature and pressure ranges pertinent to SFC with 
carbon dioxide as the mobile phase. It follows from the AH entries in Table I that, 
under operating conditions typical of isothermal SFC with carbon dioxide as the 
mobile phase, the pressure profile along a capillary column may be considered to be 
linear. 

The considerations of the preceding section assumed that the flow is isothermal, 
and that the hydrodynamic behaviour of a capillary SFC column conforms strictly to 
the Hagen-Poiseuille equation. In practice, however, there are several effects that may 
detract from the validity of these assumptions for a real capillary column, viz., (i) 
departures from the isothermal flow regime, (ii) departures from the laminar flow 
regime, (iii) column-end effects and (iv) distortion of the parabolic velocity profile 
within the column by coiling-induced secondary flow. Below, the significance is 
discussed of each of these effects in capillary-column SFC with carbon dioxide as the 
mobile phase. The treatment is far from being exact. Rather, the simple numerical 
examples given below are intended to illustrate the maximum impact of the particular 
effect. 
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TABLE I 

CALCULATED PRESSURE DROPS AND THERMAL EFFECTS IN SEVERAL CAPILLARY SFC 
COLUMNS WITH CARBON DIOXIDE AS THE MOBILE PHASE 

T(K) P,(burj i&(cm/s) AP(bar) 103AP(bar) ’ q,!rn (J/R) &2J!g) 

Column 20 m x 50 pm I.D. 
315 15 2 

5 
150 2 

345 75 2 

150 2 

240 2 
5 

380 75 2 

150 2 

240 2 

Column 10 m x 25 pm I.D. 
315 150 2 

380 75 2 

Column I m x 10 pm I.D. 

315 150 2 

380 75 2 

5 

1.11 1.9 0.48 -2.94 

2.81 12.3 1.20 -7.45 

3.32 -1.7 0.43 -0.95 

8.27 -9.9 1.08 -2.36 
1.03 I.2 0.65 -1.16 

2.59 8.0 1.63 -2.92 

1.90 0 0.40 -1.84 
4.76 0.2 0.99 -4.61 

2.99 -1.0 0.42 -0.67 
7.45 -5.5 1.05 - 1.68 
1.07 1.3 0.84 -0.78 

2.69 8.6 2.11 -1.96 
I .43 0.8 0.46 -1.11 
3.58 3.9 1.15 -2.79 
2.19 0 0.41 -0.84 
5.41 0 1.03 -2.09 

6.63 -6.4 0.86 -1.89 
16.43 -38.7 2.16 -4.70 

2.15 5.4 1.68 -1.57 
5.50 36.6 4.21 -4.01 

4.15 -2.5 0.54 -1.19 
10.32 -15.3 1.35 -2.95 

1.33 2.1 1.05 -0.97 
3.38 13.7 2.63 -2.41 

(i) Thermal effects 

When a fluid moves down a capillary tube two effects tend to change the 
temperature of the fluid. The first is the dissipation of the mechanical energy due to the 
viscosity of the fluid. To a first approximation, the heat formed by viscous dissipation 
per unit time under laminar flow conditions may be expressed by: 

In the sixth column of Table I, several values are listed of the ratio id/k in 

capillary-column SFC with carbon dioxide as the mobile phase. The second thermal 
effect is the temperature change due to expansion of the fluid along the column. In the 
extreme case of a thermally insulated column, the expansion would be isenthalpic, and 
the rate of the internal energy change due to expansion could be approximated as: 
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The minus sign is to indicate that the fluid cools down when p is positive, which is the 
case in supercritical fluids. The values of the ratio 4,/r;? are shown in the seventh 
column of Table I. The values of the product PC’, were derived from the Lee and Kesler 
corre1ation15. An inspection of the id and ge entries in Table I reveals that the two 
thermal effects tend to offset each other but that the cooling due to expansion prevails 
in most cases. Accordingly, in capillary-column SFC with carbon dioxide as the mobile 
phase, heat has to be supplied to the column to keep it at a constant temperature. Tt 
may be shown that, for a given fluid at a given temperature and pressure, the ratio Lj,/Ljd 

is nearly independent of the column geometry and the mean linear flow velocity, at 
least under laminar flow conditions. However, the absoute amounts of heat involved 
are minute since very small mass flow-rates are used in capillary-column SFC 
(typically, lop6 to lop4 g/s for carbon dioxide as the mobile phase). Hence, in 
capillary-column SFC with carbon dioxide as the mobile phase, thermal effects appear 
to be insignificant. 

(ii) Departures from the luminarjlow regime 
The Reynolds number for the flow in a capillary SFC column may be written as: 

Re = ru,,,v-’ 

Setting r = 100 pm, u,,, = 10 cm/s and v-l = 1500 s/cm’ (cf;, Fig. l), the maximum 
value of the Reynolds number in capillary-column SFC with carbon dioxide as the 
mobile phase is 150. This is still well below the critical value (Re z 2200) at which the 
onset of turbulence starts. Hence, the departures from laminar flow appear to be 
negligible in capillary-column SFC. In packed-column SFC the effects of turbulence 
are more significant16. 

(iii) Column-end effects 
In the derivation of the Hagen-Poiseuille equation the parabolic velocity profile 

is supposed to be developed throughout the length of the capillary. At the inlet. of any 
real capillary column, however, there is a transient region within which the fluid is 
accelerated and the velocity pattern developed. At the outlet end of the column the 
opposite occurs. According to the treatment quoted by Dushman and Lafferty17 for 
an incompressible fluid, the column pressure drop corrected for the end effects may be 
written as: 

AP = 8qLiii/r2 + 1.14pU’ (10) 

Assuming that p = 0.8 g/cm3 and Ui = 5 cm/s, the second term on the right-hand side 
of eqn. 10 amounts to 2.3 lo-’ bar, which is negligible compared to AP in Table I. 

(iv) Effect of column coiling 
The Hagen-Poiseuille equation applies to a straight tube. Since a capillary 

column must obviously be coiled, the impact of coiling on the applicability of the 
equation should be assessed. In a coiled column, centrifugal forces cause the streamline 

of maximum velocity to be pushed out in the direction of increasing distance from the 
coil centre. Thus. a double helical secondary flow pattern is developed in the column, 



COLUMN PRESSURE DROP IN CAPILLARY SFC 175 

TABLE II 

EFFECT OF COLUMN COILING IN CAPILLARY SFC WITH CARBON DIOXIDE AS THE 
MOBILE PHASE 

wn*x = 10 cm,k, v-’ = 1500 s/cm2, R = 7.5 cm, 

r (prl) i. 8 r* B 

25 3000 1.7 I 10-b 1.7 10-a 1 
100 750 1.9 lo-* 2.x 10 3 0.9996 
160 469 8.0 10-z 7.1 IO-3 0.9943 

and, consequently, the parabolic velocity profile is distorted. Under the flow 

conditions typical of capillary-column SFC, the velocity profile in the coiled column 
may be described by the expressions of Dean and Topakoglu1*,i9. These complex 
expressions will not be repeated here. Instead, the resulting typical values of several 
quantities characterizing the secondary flow in capillary-column SFC are listed in 
Table II. It is seen that, under the usual conditions in capillary-column SFC with 
carbon dioxide as the mobile phase, the effect of coiling upon the applicability of the 
Hagen-Poiseuille equation is not significant. However, this conclusion no longer 
applies when the radius ratio, A, is minimized intentionally to produce a gain in column 
efficiency”. 

CONCLUSION 

The model developed in this work makes it possible to calculate the pressure 
profile along a capillary column in SFC. It appears that, under operating conditions 
typical of isothermal SFC with carbon dioxide as the mobile phase, the deviations of 
the pressure profile from linearity are negligible. Simple calculations suggest that, 
under the same conditions, possible secondary effects (i))(iv) do not introduce 
a significant error into the column pressure drop calculated from the Hagen-Poiseuille 
equation. 

SYMBOLS 

CP 

L 
. 

ii 

P 

pi 

PO 
AP 
P 

AP 

Isobaric molar heat capacity of the mobile phase at the column-oven temper- 
ature and the column-inlet pressure 
Column length 

Mass flow-rate of the mobile phase through the column 
Molar mass of the mobile phase 
Pressure 
Column-inlet pressure 
Column-outlet pressure 
Pressure drop across the column, Pi - PO 
Mean pressure in the column 
Deviation of the mean pressure in the column from the arithmetic mean of the 
inlet and outlet pressures. P - (Pi + PO)/2 
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qe 

r 

R 
Re 

Urnax 

iii 

z 

c1 

P 

6 

Y 

K 

V 

vi 

P 
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Rate of heat formation due to viscous dissipation of the mechanical energy of the 
mobile phase in the column 
Rate of the internal energy change due to expansion of the mobile phase along 
the column 
Column radius 
Radius of the column coil 
Reynolds number 
Maximum linear velocity of the mobile phase at a given column cross-section 
Mean cross-sectional linear velocity of the mobile phase at the column inlet 
Distance from the column inlet 
Ratio of the maximum radial velocity to the maximum axial velocity of the 
mobile phase in the column 
Ratio of the mass flow-rate through the coiled column to the mass flow-rate 
through the corresponding straight column with the same pressure drop 
Maximum relative deviation of the axial velocity from that corresponding to the 
parabolic velocity profile 
Dynamic viscosity of the mobile phase 
Pressure derivative of v-l at the column-oven temperature and the column-inlet 

pressure 
Aspect ratio, R/r 
Joule-Thomson coeffkient of the mobile phase at the column-oven temperature 
and the column-inlet pressure 
Kinematic viscosity of the mobile phase 
Kinematic viscosity of the mobile phase at the column inlet 
Density of the mobile phase 
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